Epithelial-mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions.

نویسندگان

  • U Ullmann
  • P In't Veld
  • C Gilles
  • K Sermon
  • M De Rycke
  • H Van de Velde
  • A Van Steirteghem
  • I Liebaers
چکیده

Feeder-free human embryonic stem cell (hESC) culture is associated with the presence of mesenchymal-like cells appearing at the periphery of the colonies. The aim of this study was to identify this early differentiation process. Long-term feeder-free hESC cultures using matrigel and conditioned medium from mouse and from human origin revealed that the appearance of mesenchymal-like cells was similar regardless of the conditioned medium used. Standard characterization confirmed the preservation of hESC properties, but the feeder-free cultures could not be maintained longer than 37 passages. The early differentiation process was characterized in the short term after switching hESCs cultured on feeders to feeder-free conditions. Transmission electron microscopy showed an epithelium-like structure inside the hESC colonies, whereas the peripheral cells revealed the acquisition of a rather mesenchymal-like phenotype. Immunochemistry analysis showed that cells at the periphery of the colonies had a negative E-cadherin expression and a positive Vimentin expression, suggesting an epithelial-mesenchymal transition (EMT). Nuclear staining of beta-catenin, positive N-cadherin and negative Connexin 43 expression were also found in the mesenchymal-like cell population. After RT-PCR analysis, Slug and Snail, both EMT-related transcription factors, were detected as up-regulated in the mesenchymal-like cell population. Taken together, our data suggest that culturing hESCs in feeder-free conditions enhances an early differentiation process identified as an EMT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells

Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs. Materials and Methods: In this study, 4-5 different units o...

متن کامل

Maintenance of horse embryonic stem cells in different conditions

Embryonic stem cells (ESCs) are originally derived from the ICM of blastocysts and are characterized by their ability to self-renew and their pluripotencies. Only a few reports have been published on ESC isolations and line establishment in animals, even fewer in horses. However, it is still important to isolate equine ESCs for animal biotechnology and therapeutic applications. In the present s...

متن کامل

Increased mir33 Expression in Expanded Hematopoietic Stem Cells Cultured on Adipose Stem Cells Feeder layer

Bachgroun: Hematopoietic stem cell derived from umbilical cord blood (UCB) has been used for regenerative medicine in hematological abnormalities. MicroRNAs are important regulators of gene expression that control both physiological and pathological processes such as development of tissue and cancer. Some studies have shown that miR-33, has a critical role in control of self-renewal cells. He...

متن کامل

Mesenchymal Stem Cells Trigger Epithelial to Mesenchymal Transition in the HT-29 Colorectal Cancer Cell Line

Background and Objective: Mesenchymal stem cells (MSCs) promote metastasis in colorectal cancer; however, the mechanism underlying this process is not fully understood. Epithelial to mesenchymal transition (EMT) is a key step in tumor acquisition of metastatic phenotype. We aimed to investigate the effect of MSCs on the expression of EMT markers, as well as cancer stem cell markers in HT-29 col...

متن کامل

Male germ-like cell differentiation potential of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells in co-culture with human placenta cells in presence of BMP4 and retinoic acid

Objective(s):Mesenchymal stem cells (MSCs) derived from Wharton’s jelly (WJ-MSCs) are now much more appealing for cell-based infertility therapy. Hence, WJ-MSCs differentiation toward germ layer cells for cell therapy purposes is currently under intensive study. Materials and Methods: MSCs were isolated from human Wharton’s jelly and treated with BMP4, retinoic acid (RA) or co-cultured on huma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular human reproduction

دوره 13 1  شماره 

صفحات  -

تاریخ انتشار 2007